本文引用格式:刘刚,刘明宇,李修靖,等.负载双氢青蒿素的中空介孔二氧化锰纳米颗粒对胰腺癌BxPC-3细胞的杀伤效应[J].安徽医学,2023,44(6):623-628.**DOI:10.3969/j.issn.1000-0399.2023.06.001**

•基础医学 •

负载双氢青蒿素的中空介孔二氧化锰纳米颗粒对胰腺癌 BxPC-3 细胞的杀伤效应

刘 刚 刘明宇 李修靖 余 跃

[摘 要]目的 探究负载双氢青蒿素(DHA)的中空介孔二氧化锰纳米颗粒对胰腺癌BxPC-3细胞的杀伤效应。方法 利用 二氧化硅模板法合成了纳米中空介孔二氧化锰,通过DHA及聚乙二醇-2000(PEG-2000)共孵育后合成了PEG@MnO₂-DHA和未载药 的PEG@MnO₂,并对其进行表征和催化性能验证。利用激光共聚焦显微镜(CLSM)分别检测0,1,2和4h内BxPC-3细胞对纳米颗粒的 摄取情况。采用酶联免疫吸附试验(ELISA)检测不同氧浓度下经PEG@MnO₂-DHA处理后BxPC-3细胞内的缺氧诱导因子-1α(HIF-1α)水平,以探究PEG@MnO₂-DHA改善肿瘤微环境乏氧情况。最后用噻唑蓝比色法(MTT)和活死细胞染色法观察纳米颗粒对BxPC-3细胞的生长抑制作用。结果 本研究成功制备出粒径约为105 nm 的PEG@MnO₂-DHA,并且其能够在RPMI-1640培养基(含10% 胎牛血清)中稳定保存。CLSM结果显示,PEG@MnO₂-DHA在1h后就能够被BxPC-3细胞有效摄取。ELISA结果显示,低氧条件下, 使用20 µg/mL的PEG@MnO₂-DHA处理后的BxPC-3细胞内HIF-1α水平与使用磷酸缓冲盐溶液(PBS)处理后的BxPC-3细胞内HIF-1α水平相比明显下降(P<0.05),略低于常氧条件下PBS处理后的BxPC-3细胞中HIF-1α水平(P=0.846)。MTT结果显示,在DHA浓 度为15 µg/mL时,PEG@MnO₂-DHA处理组细胞存活率仅为21.81%,低于游离DHA处理组的46.03%(P<0.05)。结论 负载DHA之 后的中空介孔二氧化锰纳米颗粒可以被BxPC-3细胞有效摄取,并与释放出来的DHA反应产生活性氧,同时能改善肿瘤微环境乏氧 情况,增强对胰腺癌细胞的杀伤效应。

[关键词]双氢青蒿素;中空介孔二氧化锰;活性氧;胰腺癌 doi:10.3969/j.issn.1000-0399.2023.06.001

Killing effect of hollow mesoporous MnO, nanoparticles loaded with dihydroartemisinin on pancreatic cancer BxPC-3 cell line

LIU Gang¹, LIU Mingyu¹, LI Xiujing¹, YU Yue²

1. Division of Gastroenterology, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China

2. Division of Gastroenterology, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, China

Funding project: The General Program of National Natural Science Foundation of China (No.31870993) Corresponding author:YU Yue, yuyuemd@163.com

[Abstract] Objective To investigate the killing effect of hollow mesoporous MnO_2 nanoparticlesloaded withdihydroartemisinin (DHA) on pancreatic cancer BxPC-3 cells. **Methods** Hollow mesoporous MnO_2 nanoparticles were synthesized by SiO_2template method. PEG@MnO_2-DHA and PEG@MnO_2 were synthesized by co-incubation with DHA and Polyethylene glycol 2000 (PEG-2000), then characteristics and catalytic properties were investigated. The uptake of nanoparticles by BxPC-3 cells at different time (0,1,2 and 4 h) was detected by laser confocal microscopy (CLSM). The level of HIF-1 α in BxPC-3 cells was detected by ELISA assay to investigate the effect of PEG@MnO_2-DHA on hypoxia in tumour microenvironment (TME). Lastly, the growth inhibition of BxPC-3 cells by nanoparticles was observed by MTT assay and cell death staining. **Results** PEG@MnO_2-DHA with a particle size of about 105 nm was successfully prepared and could be stably stored in RPMI-1640 medium containing 10% fetal bovine serum. CLSM results showed that PEG@MnO_2-DHA could be efficiently taken up by BxPC-3 cells. ELISA results showed that HIF-1 α levels in BxPC-3 cells cultured under hypoxic conditions were significantly reduced after treatment with PEG@MnO_2-DHA at 20 µg/mL compared with PBS treatment (*P*<0.05), and the HIF-1 α level in BxPC-3 cells was slightly lower than that in the normoxia group after PBS treatment (*P*=0.846). MTT results showed that the cell survival rate of the PEG@MnO_2-DHA

通信作者:余跃,yuyuemd@163.com

基金项目:国家自然科学基金面上项目(编号:31870993)

作者单位:230031 安徽合肥 安徽中医药大学第一附属医院脾胃科(刘刚,刘铭宇,李修靖)

²³⁰⁰⁰¹ 安徽合肥 中国科学技术大学附属第一医院(安徽省立医院)消化科(余跃)

treated group was only 21.81% at 15 μ g/mL DHA concentration, which was lower than46.03% of the free DHA treated group (*P*<0.05). **Conclusions** The hollow mesoporous MnO₂ nanoparticles loaded with DHA can be effectively taken up by BxPC-3 cellsand react with the released DHA to produce reactive oxygen species, which can also improve the lack of oxygen in the tumor microenvironment and enhance the killing effect on pancreatic cancer cells.

[Key words] Dihydroartemisinin; Hollow mesoporous MnO2; Reactive oxygen species; Pancreatic cancer

胰腺癌是消化系统常见肿瘤之一,恶性程度极高, 5年生存率低[1]。近年来,中药因其广谱抗炎和抗癌活 性逐渐吸引了学者们的关注。双氢青蒿素(dihydroartemisinin,DHA)是中药青蒿提取物青蒿素经过硼氢化钠 还原得到的半合成衍生物,在青蒿素的几种衍生物中 表现出较高的抗癌活性。但是由于其水溶性差,生物 利用低,半衰期短,导致其应用被限制^[2-4]。中空介孔纳 米结构因其优秀的载药性能,吸引了广泛的注意[5]。其 中,中空介孔二氧化锰纳米递药系统在解决药物水溶 性差的同时,能够通过实体瘤的高通透性和滞留效应 (enhanced permeability and retention, EPR)在肿瘤部位 高效富集^[6-7]。研究^[8-9]发现, Mn²⁺能与 DHA 反应产生 具有细胞毒性的活性氧(reactive oxygen species, ROS), 继而增强 DHA 的抗肿瘤作用。本研究旨在构建能够 负载 DHA 的中空介孔纳米颗粒,并研究其被胰腺癌细 胞摄取和改善肿瘤部位乏氧情况,及对胰腺癌细胞的 杀伤效应,为进一步开发新的抗胰腺癌药物提供参考。

1 材料与方法

1.1 材料 DHA购买自上海晶纯生化科技股份有限 公司;噻唑蓝(methyl thiazolyl tetrazolium, MTT),缺氧诱 导因子-1α(hypoxia inducible factor-1α, HIF-1α)试剂 盒,2',7'-二氯荧光素二乙酸酯(2',7'-dichlorodihydrofluorescein diacetate, DCFH-DA), Hoechst33342 购自上 海碧云天生物技术有限公司; RPMI-1640 培养基, 胎牛 血清(fetal bovine serum, FBS), 胰酶消化液, 1×磷酸缓 冲液(phosphate buffered saline, PBS)购买自上海生工公 司; BxPC-3 细胞株购自上海细胞库。

1.2 方法

1.2.1 PEG@MnO₂-DHA 的制备 首先利用二氧化硅 模板法^[10]合成中空介孔二氧化锰,然后取 200 µL 的中 空介孔二氧化锰溶液(5 mg/mL)与 100 µL 的 DHA 溶 液(2 mg/mL)混合,超声 10 min 后,置于气浴震荡器 25℃反应过夜,反应结束后收集沉淀,甲醇洗 3 次除去 游离 DHA,最后分散在纯水中,得到负载了 DHA 的中 空介孔二氧化锰颗粒(MnO₂-DHA)。为了提高 MnO₂-DHA 的稳定性及水溶性,使用聚乙二醇-2000(polyethylene glycol-2000, PEG-2000)对 MnO₂-DHA 进行表面 修饰。取 1 mL MnO₂-DHA 水溶液(5 mg/mL)与 1 mL 的 PEG-2000(5 mg/mL),超声 10 min 后 37℃孵育过

夜,收集沉淀,用水洗涤3次后得到PEG@MnO2-DHA。 1.2.2 PEG@MnO2-DHA 的表征 取新制的 PEG@MnO,-DHA 溶液用去离子水稀释至适当浓度,分 别用透射电子显微镜(transmission electron microscope, TEM)和动态光散射仪(dynamic light scattering, DLS)检 测其形貌特征。将新制的 PEG@MnO,-DHA 重新分散 在含有 10% FBS 的 RPMI-1640 培养液中,并分别在 0、1、2、4、8、12、24、36 和 72 小时取样用 DLS 测定其水 合粒径。随后通过高效液相色谱仪(high performance liquid chromatography, HPLC)测量 PEG@MnO2-DHA 中 DHA 的载药率和包封率。通过使用不同浓度的 DHA 与介孔二氧化锰球共孵育后,用 HPLC 测量上清液中 DHA 的含量来间接测量 DHA 的载药率和包封率。 DHA 液相测定采用 Hedera ODS-C18 色谱柱(250 mm× 4.6 mm, 5 μm), 流动相为乙腈-水(v:v=60:40), 体积 流量 1 mL/min, 检测波长为 210 nm, 柱温为室温, 进样 量 20 µL。

1.2.3 DHA 的释放 取新制 PEG@MnO₂-DHA 重新 分散在 pH 7.4, pH 6.0 和 pH 5.5 的 PBS 缓冲液, 放入 透析分子量为 14 kDa 的透析袋中, 然后置于 100 mL 的 PBS 缓冲液中, 在不同时间内吸取 1 mL 透析液, 并 补充相同体积的缓冲液, 利用 HPLC 测定透析液中 DHA 的含量。

1.2.4 PEG@MnO₂-DHA 的催化性能检测 通过使用 溶氧仪检测溶液中氧气的含量,来测试 PEG@MnO₂-DHA 在不同条件下催化 H_2O_2 分解产生氧气的能力。 分别取 0、5 和 10 mg/mL 新制的 PEG@MnO₂-DHA 重 新分散于含有 100 μ M H_2O_2 的 PBS 缓冲液中,用溶氧 仪记录溶液中 0~10 min 的氧气含量。使用 3,3',5,5'-四甲基联苯胺(3,3',5,5'-Tetramethylbenzidine,TMB) 作为指示剂,来探讨 DHA 产生 ROS 的效率。在 pH 7.4 或 pH 6.5 的醋酸-醋酸钠缓冲液中,分别加入 0 或 25 mM 的 DHA,然后加入 0 或 50 mM 的氯化锰溶液, 加入等体积的 TMB 溶液后室温孵育过夜,用紫外可见 分光光度计(ultraviolet-visible spectrophotometer, UVvis)测量溶液紫外吸收情况。

1.2.5 细胞摄取 使用荧光染料罗丹明 B(rhodamine B, RhB)作为示踪剂标记 PEG@MnO₂-DHA,合成了 PEG@MnO₂-DHA-RhB。然后将 BxPC-3 细胞(8×10⁴ 个/皿)接种于激光共聚焦显微镜(confocal laser scan-

第 44 卷第 6 期	安徽医学
2023 年6 月	Anhui Medical Journal

ning microscope, CLSM)专用培养皿中,用含有 10% FBS 的 RPMI-1640 在含有 5% CO₂的培养箱 37℃培养 过夜。用含有 PEG@MnO₂-DHA-RhB(10 mg/mL)的 RPMI-1640 代替原来的培养基,继续孵育。在指定时 间(0、1、2 和 4 h)后除去含药培养基,PBS 洗涤细胞 3 次。再用含有细胞核染料 Hoechst33342(10 mg/mL)的 RPMI-1640 继续孵育 15 min。除去培养基,用 PBS 洗 涤细胞 3 次后,在 CLSM 下观察细胞荧光图像。

1.2.6 HIF-1α 检测 将 BxPC-3 细胞(5×10⁵ 个/孔) 接种于 6 孔板中,细胞培养方案同 1.2.5(低氧组是将 细胞置于厌氧产气袋中孵育过夜)。加入不同浓度(5、 10 和 20 μg/mL)PEG@MnO₂-DHA 继续孵育 24 h。收 集细胞并加入细胞裂解液裂解细胞,用蛋白质定量试 剂盒测定每组细胞裂解液蛋白浓度。将各组细胞裂解 液稀释成相同蛋白浓度后,用 HIF-1α 的 ELISA 试剂 盒测定各组 HIF-1α浓度。HIF-1α 试剂盒严格按照说 明书进行检测。

1.2.7 细胞内 ROS 检测 将 BxPC-3 细胞(8×10⁴ 个/ 皿)接种于 CLSM 培养皿中,细胞培养方案同 1.2.5。 分别用含有 PBS、游离 DHA、PEG@MnO₂ 和 PEG@MnO₂-DHA 的 RPMI-1640 替代原培养基孵育 24 h。除去含药培养基,用含有绿色荧光 ROS 探针 DCFH-DA (10 μM)和 Hoechst33342 (10 mg/mL)的 RPMI-1640 孵育 20 min 后,用 PBS 洗涤 3 次。在 CLSM 下观察细胞荧光图像。

1.2.8 纳米颗粒的杀伤作用检测 将 BxPC-3 细胞接种于 96 孔板(5×10³ 个/孔)和 6 孔板(5×10⁵ 个/孔)中, 细胞培养方案同 1.2.5。在 96 孔板中,分别用不同浓度的 游离 DHA、PEG@MnO₂和 PEG@MnO₂-DHA RPMI-1640 孵育 48 h后,每孔加入 20 μL 的 MTT 溶液(5 mg/mL)。继续孵育 4 h后,弃去旧培养基,每孔加入 150 μL 二甲亚砜,充分溶解后用酶标仪在 490 nm 处测定其吸光度,并计算细胞存活率。细胞存活率=(药物 细胞组 OD 值—空白对照组 OD 值)/(不加药细胞组 OD 值—空白对照组 OD 值)/(不加药细胞组 OD 值—空白对照组 OD 值)×100%。然后在六孔板中进行活-死细胞染色实验,分别用含有 PBS,游离 DHA, PEG@MnO₂和 PEG@MnO₂-DHA 的 RPMI-1640 替代原培养基孵育 24 h。弃去旧培养基后,加入含有碘化丙啶(10 μM)和荧光素二乙酸酯(5 μM)的 RPMI-1640 孵育 10 min,用倒置荧光显微镜观察各组细胞荧光。

1.3 统计学方法 采用 SPSS 23.0 进行统计分析,正态分布计量资料以*x*±s 表示,两组间均数比较采用 *t* 检验,3 组及以上均数比较采用单因素方差分析,组间两两比较采用 SNK-q 法。以 *P*<0.05 为差异有统计学意义。

2 结果

2.1 PEG@MnO₂-DHA 表征及稳定性 TEM 结果显示,PEG@MnO₂-DHA 具有中空介孔球形结构,粒径在 105 nm 左右(图 1A)。DLS 结果显示,MnO₂-DHA 经过 PEG 修饰之后,粒径从 121 nm 增加至 150 nm(图 1B)。 在一定浓度范围内,当 DHA 与介孔二氧化锰球的重量 比为 2:1 时,此时药物包封率高达 95.3%,载药率达 65.6%(图 1C)。PEG@MnO₂-DHA 的粒径比较稳定,在 72 h 内无明显变化(图 1D)。

625

注:A为PEG@MnO₂-DHA的TEM特征;B为DLS检 测纳米颗粒的粒径;C为不同投料比下DHA的负载率和 包封率;D为PEG@MnO₂-DHA在血清中的稳定性。 **图1** 纳米颗粒表征

2.2 PEG@MnO₂-DHA 药物释放效率及催化性能 释 放结果显示,在 pH 7.4条件下,DHA 在 48 h 内释放最 少,仅有 14.8%的 DHA 被释放出来;而在 pH 5.5条 件下,DHA 释放率达 80%(图 2A)。溶氧仪测量结果显 示,在一定浓度的 H₂O₂中,随着 PEG@MnO₂-DHA 浓度 的增加,产生的氧气量也越来越多(图 2B)。UV-vis 结 果显示,在 DHA 25 mM 与 Mn²⁺ 50 mM 时,pH 6.5 组特 征峰最高,但单一的 DHA 或者 Mn²⁺则几乎看不见特征 峰(图 2C)。

2.3 细胞摄取实验结果 CLSM 结果显示,使用 PEG@MnO₂-DHA-RhB 与细胞孵育 1 h 后,在细胞中就 可以检测到 RhB 的红色荧光,4 h 后,显示出最明亮的 红色荧光(图 3)。

2.4 PEG@MnO2-DHA 对细胞内 HIF-1α 和 ROS 的影响 与低氧条件下 PBS 组(I组)细胞内 HIF-1α 水平 相比较,常氧条件下 PBS 组(V组)细胞内 HIF-1α 水 平较低(*P*<0.000 1), 20 μg/mL PEG@MnO2-DHA 组(N组)的细胞内 HIF-1α 水平显著下降(*P*<0.001)。 20 μg/mL PEG@MnO2-DHA 组(N组)的细胞内 HIF-

第44卷第6期 2023年6月

注:A为不同pH条件下DHA的释放情况;B为溶氧仪检测不同浓度PEG@MnO2-DHA催化H2O2产生氧气的速率;C为用TMB检测不同条件下DHA于Mn²⁺产生ROS情况。

图3 CLSM 检测细胞摄取情况

1α 水平略高于常氧条件下 PBS 对照组(V组)(P=

0.846)(图 4A)。ROS 检测结果显示,与 PBS 组相比, PEG@MnO₂几乎未检测到绿色荧光,游离 DHA 组检测 到稍低绿色荧光,而 PEG@MnO₂-DHA 组表现出最明 显的绿色荧光(图 4B)。

2.5 PEG@MnO₂-DHA 对 BxPC-3 细胞的杀伤情况 孵育 48 h 后, PEG@MnO₂给药浓度即使为 200 μg/mL, 细胞毒性也不明显(图 5A)。当 DHA 浓度为 15 μg/mL 时,游离 DHA 组细胞存活率仅为 21.8%,明显低于 游离 DHA 组(P<0.000 1)。见图 5B。活死细胞染色结 果显示, PEG@MnO₂-DHA 组显示最明亮的红色荧光, 而 PEG@MnO₂组和游离 DHA 组仅显示出少量红色荧 光,甚至红色荧光不可见(图 5C)。

注:A为ELISA法检测细胞内HIF-1α水平变化(I~IV组是低氧处理,分别是PBS、5 μg/mL PEG@MnO₂-DHA、10 μg/mL PEG@MnO₂-DHA、20 μg/mL PEG@MnO₂-DHA、V组是常氧处理的PBS组);B为CLSM检测细胞内ROS水平变化情况。其中[@]P<0.0001。

图4 细胞内HIF-1α和ROS水平检测

注:A为MTT法检测PEG@MnO₂对BxPC-3细胞的杀伤作用;B为MTT法检测游离DHA和PEG@MnO₂-DHA对BxPC-3细胞的杀伤作用;C为活死细胞染色法检测不同颗粒对BxPC-3细胞的杀伤作用。其中^①为P<0.05,^②为P<0.01,^③为P<0.001,^④为P<0.0001。

图5 细胞杀伤情况

3 讨论

胰腺癌患者早期症状不明显,确诊时已为晚期,又 因胰腺处于特殊的解剖位置,周围的肠胃等正常器官 对放疗较敏感,所以传统外科手术结合放化疗的治疗 效果不理想,严重影响患者生活质量^[11]。近年来,纳米 递药系统引起了研究人员的广泛注意。纳米递药系统 是通过特殊的纳米载体,将一些传统药物吸附或包埋 在其中^[12],这种方式能够极大地改善药物溶解性差的 问题。纳米尺寸的药物也能通过 EPR 效应在肿瘤部位 富集,延长药物作用时间,提高药物的靶向性,减少对 正常组织的副作用^[13]。将传统药物与纳米载体结合起 来用于肿瘤治疗,是目前肿瘤研究的热点。

随着人们对纳米材料的深入研究,中空介孔二氧 化锰纳米颗粒的肿瘤微环境响应性及改善乏氧的能力 也逐渐被研究人员发现^[14]。Fang 等^[15]利用中空介孔二 氧化锰负载阿霉素和光敏剂制备的 BMHDC 纳米颗 粒,通过触发内源性H₂O₂的分解而充当氧气发生器,从 而克服肿瘤的低氧环境而增强光动力疗法,且 BMHDC 纳米颗粒分解出的 Mn²⁺能通过肾脏快速代谢出体外。 这表明中空介孔二氧化锰纳米颗粒是一种成熟的低毒 性的纳米材料。目前,对中空介孔二氧化锰纳米颗粒 的研究多集中在改善乏氧和响应肿瘤微环境上,而对 其与 DHA 反应产生 ROS 的研究较少。中空介孔二氧 化锰纳米颗粒可作为 DHA 的纳米载体,既改善 DHA 溶解性差的问题,又利用纳米药物的 EPR 效应,提高 DHA 的生物半衰期。同时,中空介孔二氧化锰纳米颗 粒由于其独特的肿瘤微环境响应性,可作为 DHA 的控 释支架,能减少 DHA 的潜在全身毒副作用。

基于中空介孔二氧化锰纳米颗粒特殊的蜂窝状空 心结构,可以采用共孵育的方式使 DHA 包埋在内部。

而 PEG@MnO,-DHA 表面修饰的 PEG 进一步确保 DHA 不会泄露出来,提高了纳米载体的生物相容性。 本研究 TEM 与 DLS 检测显示, PEG@MnO,-DHA 为 150 nm 左右的中空介孔纳米球。药物包封率和载药率 决定了纳米载体的载药性能。与利用网状结构或球状 结构通过吸附作用负载药物等方式相比,中空介孔结 构有效提高了药物负载效率^[16]。本研究 HPLC 结果显 示,PEG@MnO₂-DHA 中 DHA 的包封率和载药率高达 95.3% 和 65.6%。Wang 等^[17]报道了一种载有功能基 因的空心二氧化锰纳米颗粒 H-M-pp/C&D,能在含血 清的细胞培养基中稳定存在 25 h。相比之下,经过 PEG 表面修饰的 PEG@MnO2-DHA,其血清稳定性提高 至 72 h,这为药物在血液中稳定运输建立了基础。众 所周知,乏氧、微酸和高H,O,是肿瘤微环境的主要特 征^[18]。HIF-1α 是评估组织缺氧的重要指标^[19]。本研 究 ELISA 结果显示,在低氧条件下培养的 BxPC-3 细 胞经 PEG@MnO₂-DHA 处理后,HIF-1α 的水平明显下 降,这表明 PEG@MnO,-DHA 被细胞内吞之后,催化内 源性的 H,O,产生了氧气,缓解肿瘤部位的乏氧状态。 DHA 是一种具有分子内过氧桥结构的倍半萜内酯类化 合物,有广泛的抗癌及抗炎活性^[20]。系列研究^[21-22]发 现,DHA 在 Mn²⁺的催化下其内过氧桥断裂产生细胞毒 性的 ROS。本研究细胞内 ROS 检测结果显示,与 PBS 组相比,游离 DHA 组也显示出一定程度绿色荧光,笔 者猜测可能是游离 DHA 与细胞内源性的 Mn²⁺反应,产 生了 ROS。但 PEG@MnO,-DHA 组绿色荧光高于游离 DHA 组,这表明了中空介孔二氧化锰纳米颗粒释放出 的 Mn²⁺与 DHA 反应产生了更多的 ROS。最后, MTT 和活死细胞染色结果均显示,PEG@MnO2-DHA 组杀伤 作用最强,表明了经过中空介孔二氧化锰负载过后, DHA 的杀伤作用得到增强,证明了中空介孔二氧化锰

递送 DHA 能有效抑制肿瘤生长。

综上所述,中空介孔二氧化锰可通过其特殊结构 成功负载 DHA。一方面,纳米尺寸的中空介孔二氧化 锰负载 DHA,能通过实体肿瘤部位的 EPR 增强药物在 肿瘤部位富集;另一方面,由于 Mn²⁺与 DHA 反应产生 ROS,提高了 DHA 的抗肿瘤作用;最后,通过催化内源 性 H₂O₂产生氧气缓解肿瘤部位乏氧状态,进一步提高 了肿瘤细胞对药物的敏感性。而中空介孔二氧化锰负 载 DHA 在体内应用时,其对 DHA 抗肿瘤作用的增强 是否和体外结果一致,有待进一步研究。

参考文献

- SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020
 [J].CA Cancer J Clin,2020,70(1):7–30.
- [2] DAI X, ZHANG X, CHEN W, et al. Dihydroartemisinin: a potential natural anticancer drug[J]. Int J Biol Sci, 2021, 17(2): 603-622.
- [3] ZHANG F, MA Q, XU Z, et al. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer[J]. J Exp Clin Cancer Res, 2017, 36(1):68.
- [4] CAI X, MIAO J, SUN R, et al. Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer[J].Pharmacol Res, 2021,170:105701.
- [5] TAO G, HE W, WANG Y, et al. Dispersity, mesoporous structure and particle size modulation of hollow mesoporous silica nanoparticles with excellent adsorption performance[J]. Dalton Trans, 2018,47(38):13345–13352.
- [6] BOYJOO Y, ROCHARD G, GIRAUDON J M. et al., Mesoporous MnO₂ hollow spheres for enhanced catalytic oxidation of formaldehyde[J]. Sustain Mater Technol, 2019,20: e00091.
- [7] WU Y, CHEN Z, YAO Z, et al. Black phosphorus quantum dots encapsulated biodegradable hollow mesoporous MnO₂: dual-modality cancer imaging and synergistic chemophototherapy[J].Adv Funct Mater, 2021,31(41):2104643.
- [8] FEI W, CHEN D, TANG H, et al. Targeted GSH-exhausting and hydroxyl radical self-producing manganese - silica nanomissiles for MRI guided ferroptotic cancer therapy[J]. Nanoscale, 2020,12(32):16738-16754.
- [9] FAN S, YANG Q, SONG Q, et al. Multi-pathway inducing ferroptosis by MnO₂-based nanodrugs for targeted cancer therapy
 [J].Chem Commun, 2022,58(45):6486–6489.
- [10] CHEN Z, PENG B, XU J Q, et al. A non-surfactant selftemplating strategy for mesoporous silica nanospheres: beyond the Stöber method[J].Nanoscale,2020,12(6):3657-3662.

- [11] MCGUIGAN A, KELLY P, TURKINGTON R C, et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes[J]. World J Gastroenterol, 2018, 24 (43): 4846.
- [12] ZONG T X, SILVEIRA A P, MORAIS J A V, et al. Recent advances in antimicrobial nano-drug delivery systems[J]. Nanomaterials,2022,12(11):1855.
- [13] CIRCIOBAN D, LEDETI A, VLASE G, et al. Thermal stability and kinetic degradation study for dihydroartemisinin[J]. J Therm Anal Calorim, 2020,142(5):2131-2139.
- [14] WU Y F, CHEN Z X, YAO Z P, et al. Black phosphorus quantum dots encapsulated biodegradable hollow mesoporous MnO₂: dual - modality cancer imaging and synergistic chemo - phototherapy[J]. Adv Funct Mater, 2021, 31(41): 2104643.
- [15] FANG J F, WANG Q, YANG G J, et al. Albumin-MnO2 gated hollow mesoporous silica nanosystem for modulating tumor hypoxia and synergetic therapy of cervical carcinoma[J]. Colloids Surf B Biointerfaces,2019,179:250-259.
- [16] SUN L Z, LV H, FENG J, et al. Noble-metal-based hollow mesoporous nanoparticles: synthesis strategies and applications[J].Adv Mater,2022,34(31):2201954.
- [17] WANG W C, CHEN X Z, LI J W, et al.Hollow MnO₂ nanoparticles loaded with functional genes as nanovaccines for synergistic cancer therapy[J]. ACS Appl Nano Mater, 2022, 5(8): 10537-10547.
- [18] PETROVA V, ANNICCHIARICO-PETRUZZELLI M, MELINO G, et al. The hypoxic tumour microenvironment[J]. Oncogenesis,2018,7(1):10.
- [19] CHEN Q W, WANG J W, WANG X N, et al. Inhibition of tumor progression through the coupling of bacterial respiration with tumor metabolism[J]. Angew Chem Int Ed, 2020,59(48): 21562-21570.
- [20] 蒋沅岐,董玉洁,周福军,等.青蒿素及其衍生物的研究进展[J].中草药,2022,53(2):599-608.
- [21] LI Q, YUAN Q, JIANG N, et al. Dihydroartemisinin regulates immune cell heterogeneity by triggering a cascade reaction of CDK and MAPK phosphorylation[J].Signal Transduct Target Ther, 2022,7(1):222.
- [22] SHAO L, HU T, FAN X, et al. Intelligent nanoplatform with multi therapeutic modalities for synergistic cancer therapy[J]. ACS Appl Mater Interfaces, 2022,14(11):13122-13135.

(2023-01-08收稿) (本文编校:刘菲,胡欣)