文章摘要
基于机器学习算法sST2与TyG指数对冠心病患者冠脉狭窄的预测价值
Predictive study of sST2 and TyG index for coronary artery stenosis in patients with coronary heart disease: based on machine learning algorithms
投稿时间:2024-06-23  
DOI:10.3969/j.issn.1000-0399.2024.12.001
中文关键词: 冠脉狭窄程度  可溶性生长刺激表达因子2  三酰甘油葡萄糖乘积指数  机器学习
英文关键词: Coronary artery stenosis  sST2  TyG index  Machine learning
基金项目:安徽省高校人文社会科学重点研究项目(编号:SK2021A0433)
作者单位E-mail
魏娜娜 233000 安徽蚌埠 蚌埠医学院第一附属医院全科医学科  
郦忆文 233000 安徽蚌埠 蚌埠医学院第一附属医院全科医学科  
杨庆宇 233000 安徽蚌埠 蚌埠医学院第一附属医院全科医学科  
高芳 233000 安徽蚌埠 蚌埠医学院第一附属医院全科医学科  
宣玲 233000 安徽蚌埠 蚌埠医学院第一附属医院心血管科 13855230121@163.com 
摘要点击次数: 520
全文下载次数: 288
中文摘要:
      目的 探讨可溶性生长刺激表达因子2(sST2)和三酰甘油葡萄糖乘积(TyG)指数对冠心病患者冠脉狭窄程度的影响,同时构建最佳机器学习预测模型并进行验证。方法 收集2021年6月至2023年2月在蚌埠医科大学第一附属医院确诊为冠心病的193例患者资料,根据Gensini评分分为轻度狭窄组(n=92)和重度狭窄组(n=101),对比两组患者的特征差异,进一步使用多因素logistic回归分析sST2、TyG与冠脉狭窄程度的关联;同时构建多种机器学习算法,包括随机森林、支持向量机、基于XGBoost(eXtreme Gradient Boosting,极端梯度提升)的模型和反向传播神经网络算法,开展冠脉狭窄预测能力比较,通过计算受试者工作特征(ROC)曲线下面积(AUC)寻找最优模型。结果 与轻度狭窄组相比,重度狭窄组sST2、TyG指数水平更高,差异有统计学意义(P<0.001)。多因素logistic回归分析表明sST2(OR=1.082,95% CI:1.008~1.161)和TyG指数(OR=3.834,95% CI:1.856~7.921)是冠心病患者重度冠脉狭窄的危险因素。不同机器学习模型预测性能均高于传统logistic模型(AUC:0.708,95% CI:0.576~0.841),其中,预测性能最高的为XGBoost模型(AUC:0.848,95% CI:0.740~0.955)。此外,机器学习模型的变量重要性排序结果均显示,ST2和TyG指数是位于前5位重要的预测变量。结论 sST2与TyG指数和冠心病患者冠脉狭窄密切相关,特别是结合机器学习算法能更好地开展冠脉狭窄风险预测。
英文摘要:
      Objective To investigate the impact of soluble suppression of tumorigenicity 2 (sST2) and triglyceride-glucose (TyG) index on the severity of coronary artery stenosis in patients with coronary heart disease (CHD), and to develop and validate an optimal machine learning prediction model. Methods Data from 193 patients diagnosed with CHD at the First Affiliated Hospital of Bengbu Medical College from June 2021 to February 2023 were collected. Based on the Gensini score, patients were categorized into a mild stenosis group (n=92) and a severe stenosis group (n=101). Differences in characteristics between the two groups were compared, and multivariate logistic regression analysis was performed to assess the associations of sST2 and TyG with the severity of coronary stenosis. Additionally, various machine learning algo-rithms, including random forest, support vector machine, XGBoost (eXtreme Gradient Boosting), and backpropagation neural network, were em-ployed to compare their predictive capabilities for coronary stenosis. The optimal model was identified by calculating the area under the receiver operating characteristic curve (AUC). Results Compared with the mild stenosis group, the severe stenosis group had significantly higher levels of sST2 and TyG index (P<0.001). Multivariate logistic regression analysis revealed that sST2 (OR=1.082, 95%CI: 1.008~1.161) and TyG index (OR=3.834, 95%CI: 1.856~7.921) were risk factors for severe coronary stenosis in CHD patients. The predictive performance of different machine learning models surpassed that of the traditional logistic model (AUC: 0.708, 95%CI: 0.576~0.841), with the XGBoost model exhibiting the highest predictive accuracy (AUC: 0.848, 95%CI: 0.740~0.955). Furthermore, variable importance rankings across all machine learning models consistently placed sST2 and TyG index among the top five most important predictors. Conclusion sST2 and TyG index are closely associated with the severity of coronary stenosis in CHD patients. Combining these biomarkers with machine learning algorithms can significantly enhance the predictive accuracy for coronary stenosis risk.
查看全文   查看/发表评论  下载PDF阅读器
关闭